Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1500697.v2

ABSTRACT

Diagnostic assays currently used to monitor the efficacy of COVID-19 vaccines measure levels of antibodies to the receptor-binding domain of ancestral SARS-CoV-2 (RBDwt). However, the predictive value for protection against new variants of concern (VOCs) has not been firmly established. Here, we used bead-based arrays and flow cytometry to measure binding of antibodies to spike proteins and receptor-binding domains (RBDs) from VOCs in 12,000 sera. Effects of sera on RBD-ACE2 interactions were measured as a proxy for neutralizing antibodies. The samples were obtained from healthy individuals or patients on immunosuppressive therapy who had received two to four doses of COVID-19 vaccines and from COVID-19 convalescents. The results show that anti-RBDwt titers correlate with the levels of binding- and neutralizing antibodies against the Alpha, Beta, Gamma, Delta, Epsilon and Omicron variants. The benefit of multiplexed analysis lies in the ability to measure a wide range of anti-RBD titers using a single dilution of serum for each assay. The reactivity patterns also yield an internal reference for neutralizing activity and binding antibody units per milliliter (BAU/ml). Results obtained with sera from vaccinated healthy individuals and patients confirmed and extended results from previous studies on time-dependent waning of antibody levels and effects of immunosuppressive agents. We conclude that anti-RBDwt titers correlate with levels of neutralizing antibodies against VOCs and propose that our method may be implemented to enhance the precision and throughput of immunomonitoring.


Subject(s)
COVID-19
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.03.26.484261

ABSTRACT

Diagnostic assays currently used to monitor the efficacy of COVID-19 vaccines measure levels of antibodies to the receptor-binding domain of ancestral SARS-CoV-2 (RBDwt). However, the predictive value for protection against new variants of concern (VOCs) has not been firmly established. Here, we used bead-based arrays and flow cytometry to measure binding of antibodies to spike proteins and receptor-binding domains (RBDs) from VOCs in 12,000 sera. Effects of sera on RBD-ACE2 interactions were measured as a proxy for neutralizing antibodies. The samples were obtained from healthy individuals or patients on immunosuppressive therapy who had received two to four doses of COVID-19 vaccines and from COVID-19 convalescents. The results show that anti-RBDwt titers correlate with the levels of binding- and neutralizing antibodies against the Alpha, Beta, Gamma, Delta, Epsilon and Omicron variants. The benefit of multiplexed analysis lies in the ability to measure a wide range of anti-RBD titers using a single dilution of serum for each assay. The reactivity patterns also yield an internal reference for neutralizing activity and binding antibody units per milliliter (BAU/ml). Results obtained with sera from vaccinated healthy individuals and patients confirmed and extended results from previous studies on time-dependent waning of antibody levels and effects of immunosuppressive agents. We conclude that anti-RBDwt titers correlate with levels of neutralizing antibodies against VOCs and propose that our method may be implemented to enhance the precision and throughput of immunomonitoring.


Subject(s)
COVID-19
3.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.13.21260412

ABSTRACT

ObjectiveAlthough COVID-19 is primarily a respiratory infection, mounting evidence suggests that the GI tract is involved in the disease, with gut barrier dysfunction and gut microbiota alterations being related to disease severity. Whether these alterations persist and could be related to long-term respiratory dysfunction is unknown. DesignFrom the NOR-Solidarity trial (n=181), plasma was collected during hospital admission and after three months, and analyzed for markers of gut barrier dysfunction and inflammation. At the three-month follow-up, pulmonary function was assessed by measuring diffusing capacity of the lungs for carbon monoxide (DLCO), and rectal swabs for gut microbiota analyses were collected (n= 97) and analysed by sequencing of the 16S rRNA gene. ResultsGut microbiota diversity was reduced in COVID-19 patients with persistent respiratory dysfunction, defined as DLCO below lower limit of normal three months after hospitalization. These patients also had an altered global gut microbiota composition, with reduced abundance of Erysipelotrichaceae UCG-003 and increased abundance of Flavonifractor and Veillonella, the latter potentially being linked to fibrosis. During hospitalization, increased plasma levels of lipopolysaccharide-binding protein (LBP) were strongly associated with respiratory failure, defined as pO2/fiO2-(P/F-ratio)<26.6 kPa. LBP levels remained elevated during and after hospitalization, and was associated with low-grade inflammation and persistent respiratory dysfunction after three months. ConclusionPersistent respiratory dysfunction after COVID-19 is associated with reduced biodiversity and gut microbiota alterations, along with persistently elevated LBP levels. Our results point to a potential gut-lung axis that should be further investigated in relation to long-term pulmonary dysfunction and long COVID. Summary boxO_ST_ABSWhat is already known about this subject?C_ST_ABSO_LIMounting evidence suggests that the gastrointestinal tract is involved in the pathogenesis of COVID-19, with the putative SARS-CoV-2 receptor ACE 2 ubiquitously expressed in the gut. C_LIO_LIIn severe COVID-19, the gut-blood barrier is compromised, and leakage of microbial products, such as lipopolysaccharides (LPS), could affect the hosts response to COVID-19 infection. C_LIO_LICOVID-19 patients exhibit an altered gut microbiota composition, which has been related to disease severity. However, it is currently not known whether dysbiosis or gut barrier dysfunction persist long-term after hospitalization, or whether microbiota-related mechanisms could be related to persistent pulmonary dysfunction. C_LI What are the new findings?O_LICOVID-19 patients with persistent respiratory dysfunction after three months had a lower microbial diversity and an altered gut microbiota composition at the same time point. C_LIO_LIThe microbiota alterations included reduced abundance of Erysipelotrichaceae UCG-003 and increased abundance of Veillonella and Flavonifractor. C_LIO_LIDuring hospitalization, increased plasma levels of LBP were strongly associated with respiratory failure. C_LIO_LILBP levels remained elevated during and after hospitalization, and associated significantly with persistent respiratory dysfunction at three-month follow-up. C_LI How might it impact on clinical practice in the foreseeable future?Our findings point to a potential gut-lung axis in relation not only to respiratory failure during hospitalization, but also to long-term COVID-19 morbidity. Further studies on gut microbiota composition and gut barrier dysfunction as potential treatment targets and/or disease severity biomarkers in relation to long-term pulmonary dysfunction and long COVID are warranted.


Subject(s)
COVID-19
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.09.07.20189415

ABSTRACT

ObjectiveTo test the hypotheses that blood concentrations of neurofilament light chain protein (NfL) and glial fibrillary acidic protein (GFAp) can serve as biomarkers for disease severity in COVID-19 patients. MethodsForty-seven inpatients with confirmed COVID-19 had blood samples drawn on admission for assessing serum biomarkers of CNS injury by Single molecule array (Simoa). Concentrations of NfL and GFAp were analyzed in relation to symptoms, clinical signs, inflammatory biomarkers and clinical outcomes. We used multivariate linear models to test for differences in biomarker concentrations in the subgroups, accounting for confounding effects. ResultsIn total, 21 % (n = 10) of the patients were admitted to an intensive care unit, whereas the overall mortality rate was 13 % (n = 6). Non-survivors had higher serum concentrations of NfL than patients who were discharged alive both in adjusted analyses (p = 2.6 x 10-7) and unadjusted analyses (p = 0.001). Serum concentrations of GFAp were significantly higher in non-survivors than survivors in adjusted analyses (p = 0.02). The NfL concentrations in non-survivors increased over repeated measurements, whereas the concentrations in survivors were stable. Significantly higher concentrations of NfL were found in patients reporting fatigue, while reduced concentrations were found in patients experiencing cough, myalgia and joint pain. ConclusionIncreased concentrations of NfL and GFAp in COVID-19 patients on admission may indicate increased mortality risk. Measurement of blood biomarkers for nervous system injury can be useful to detect and monitor CNS injury in COVID-19.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL